skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhong, Huicong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional integral of a given function. The new algorithm, called the MDI-SG (multilevel dimension iteration sparse grid) method, implements the sparse grid method based on a dimension iteration/reduction procedure. It does not need to store the integration points, nor does it compute the function values independently at each integration point; instead, it reuses the computation for function evaluations as much as possible by performing the function evaluations at all integration points in a cluster and iteratively along coordinate directions. It is shown numerically that the computational complexity (in terms of CPU time) of the proposed MDI-SG method is of polynomial order O(d3Nb)(b≤2) or better, compared to the exponential order O(N(logN)d−1) for the standard sparse grid method, where N denotes the maximum number of integration points in each coordinate direction. As a result, the proposed MDI-SG method effectively circumvents the curse of dimensionality suffered by the standard sparse grid method for high-dimensional numerical integration. 
    more » « less